Фотодиод это: принцип работы, виды, основные характеристики, схемы

Фотодиод – радиодеталь, имеющая высокую фоточувствительность диода с переходом p-n. При появлении света, внутри него возникает электронно-дырочная пара. Ток имеет тоже направление что и обратный токовый переход.

 В случае попадания излучения на фотодиод, оно частично рассеивается, а большая его часть просто поглощается. При этом возникают носители этого заряда, то есть дырки и электроны, что приводит к высокой электропроводности.

Это свойство объясняет их популярность при производстве самых различных датчиков, элементов управления и других устройствах, работающие с привязкой к свету и его интенсивности. Статья содержит подробную информацию о данных радиодеталях и как они используются.

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Принципы действия

Фотодиоды преобразуют световые сигналы прямо в электрические,, используя обрат-лый пр сравнению со светодиодами физический процесс. В p-i-n-фотодиоде есть широкий внутренний (i-) полупроводниковый слой, разделяющий зоны р- и n-типа, как показано на рис. 6.9. На диод подается обратное смещение (5-20 вольт), это помогает удерживать лосители заряда от внутренней области.

  • а — полупроводниковая структура фоточувствительного элемента фотодиода с р—п- переходом; б — внешний вид; в — УГО;
  • г — ВАХ;
  • / — слой проводника с примесями, создающими избыток электронов (л-носителей);
  • 2— слой полупроводника с примесями, создающими избыток дырок (л-носителей); 3 — металлические контакты дящиеся на расстоянии от р — п-перехода, меньшем длины диффузии, достигают перехода и под воздействием потенциального барьера перехода переходят в область с п-проводимостью.

То же происходит с дырками, генерируемыми в /7-области. Неосновные носители, генерируемые в области освещения объемного заряда перехода, перемещаются в область с соответствующим типом проводимости. В результате разделения неравновесных носителей заряда высота потенциального барьера на границе р—п-перехода понижается и возникает обратный ток, пропорциональный освещенности.

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Фотодиоды используют в фотодиодном и фотогальваническом режимах. В первом режиме диод смещается в обратном направлении напряжением и фототок, возникающий при освещении, является функцией мощности светового потока. Во втором режиме прибор работает — генерирует фотоЭДС, т.е.

при освещении р—72- перехода на выходе фотодиода возникает напряжение, пропорциональное мощности светового потока.

По сравнению с фотогальваническим фотодиодный режим обладает следующими достоинствами: повышенным быстродействием и чувствительностью к длинноволновой части оптического спектра, более широким динамическим диапазоном с линейной характеристикой.

Основным недостатком фотодиода является наличие шумового тока, протекающего через нагрузку. В некоторых случаях при необходимости обеспечения низкого уровня шума фотоприемника фотогальванический режим может оказаться более выгодным, чем фотодиодный. Для снижения шумового тока применяют охлаждение фотодиода до -10 °С.

Фотодиод это: принцип работы, виды, основные характеристики, схемы Таблица типовых характеристик фотодиодов.

Вольт-амперные характеристики фотодиода в квадранте I соответствуют включению в прямом направлении. Квадрант 111 соответствует случаю работы диода в фотодиодном и фотогальваническом режимах.

По оси напряжения можно определить фотоЭДС при различной интенсивности принимаемого светового потока Ф и нулевом сопротивлении нагрузки, а по оси тока — фототок при различных значениях Ф и нулевом сопротивлении нагрузки. Характеристики в квадранте III соответствуют включению прибора в фотодиодном режиме.

В паспорте фотодиода обычно указывают рабочее напряжение (?/раб) и напряжение электрического пробоя (?/пр), позволяющие использовать фотодиод в оптимальном режиме.

Будет интересно➡  Что такое адресная светодиодная лента

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Люкс-амперные характеристики кремниевых фотодиодов линейны до интенсивности, превышающей сотни тысяч люкс. Насыщение фотодиода и выход на нелинейный участок в фотогальваническом режиме наступают при меньших уровнях освещенности, по сравнению с фотодиодным.

Насыщение германиевого фотодиода в фотодиодном режиме происходит при интенсивности облучения в тысячи — десятки тысяч люкс.

Фоточувствительность и обнаружительная способность фотодиода уменьшается, а уровень собственных шумов увеличивается с увеличением температуры прибора в связи с увеличением тем- нового тока.

Вольт-амперную характеристику при отсутствии облучения называют темповой. Значение темнового тока /х при заданной температуре окружающей среды и рабочем напряжении обычно указывают в паспорте прибора. Темновой ток кремниевых и германиевых фотодиодов зависит от температуры окружающей среды.

С повышением температуры на каждые 10 °С темновой ток германиевых приборов увеличивается в два, а кремниевых — в 2,5 раза. При этом максимум спектральной характеристики сдвигается в сторону более коротких волн. Понижение температуры приводит к противоположным изменениям, т.е. к повышению чувствительности, снижению шумов, расширению спектрального диапазона.

Поэтому для улучшения работы фотодиодов применяют охлаждение полупроводниковым холодильником на основе эффекта Пельтье.

Фотодиод это: принцип работы, виды, основные характеристики, схемы Различные типы светодиодов.

Принцип работы и схема включения фотодиода в вентильном (фотогенераторном) режиме циального барьера перехода уменьшает также контактную разность потенциалов в переходе ек, что ослабляет дрейф электронов из р- области в «-область.

Между встречными потоками электронов наступает динамическое равновесие (поток электронов из /7-области равен потоку электронов из «-области).

Однако в результате дрейфа увеличивается концентрация основных отрицательно заряженных зарядов — электронов в «-области и положительно заряженных дырок в /7-области и создается разность потенциалов между р- и «-областями, которая зависит от интенсивности светового потока и называется фотоэлектродвижущей силой (фотоЭДС).

Обычно она составляет 0,1—1 В и не может быть больше контактной разности потенциалов в потенциальном барьере.

Образование фотоЭДС, обусловленное перераспределением зарядов между /7- и «-полупроводниками за счет фотопотока, называется фотогальваническим эффектом.

Таким образом, в результате образования фотоЭДС частично компенсируется контактная разность потенциалов р-п-перехода и тем самым снижается его потенциальный барьер.

Если области полупроводника, образующие /7-«-переход, замкнуть внешней цепью, то в ней потечет фототок /ф, направление которого совпадает с направлением тока неосновных носителей заряда /7-области, т.е.

фототок течет в том же направлении, что и обратный ток /7-«-перехода при подаче напряжения обратного смещения. Основными характеристиками фотодиодов являются световая, вольт-амперная и спектральная характеристики, снятые по схеме.

Рассмотрим основные характеристики фотодиода в фотодиодном (фотопреобразовательном) режиме.

Будет интересно➡  Маркировка SMD транзисторов

Материал в тему: все о переменном конденсаторе.

Ширина внутреннего слоя гарантирует, что высока вероятность поглощения входящих фотонов именно этим слоем, а не областями р- или n-типа. Внутренний слой имеет высокое сопротивление, поскольку в нем нет свободных носителей заряда.

Это приводит к падению большей части напряжения на этот слой, и результирующее электрическое поле повышает скорость ответа и снижает шум. Когда луч света с подходящей энергией попадает на внутренний слой, он создает пару электрон – дырка, поднимая электрон из валентной зоны в зону проводимости и оставляя на его месте дырку.

Напряжение смещения заставляет эти носители заряда (электроны в зоне проводимости) быстро смещаться из переходной зоны, создавая ток, пропорциональный падающему свету.

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Длина волны отсечки

У входящего фотона должно быть достаточно энергии для подъема электрона через запрещенную зону и создания пары электрон – дырка.

У различных полупроводниковых материалов ширина запрещенной зоны различная, энергетический барьер в электрон-вольтах (эВ) может быть связан с длиной волны (λ) с помощью того же самого уравнения, как для светодиодов.

Для конкретного типа детектора энергетический барьер W есть величина постоянная, поэтому вышеприведенная формула дает максимальную длину волны, которая может быть зафиксирована, то есть длину волны отсечки.

Чувствительность

Чувствительность ρ есть отношение выходного тока (i) детектора к входной оптической -мощности (Р). Для 800 нм чувствительность кремния около 0,5 А/Вт, а пиковая чувствительность InGaAs около 1,1 А/Вт для 1700 нм, снижаясь до 0,77 А/Вт для 1300 нм.

Читайте также:  Как проверить тонометр на точность в домашних условиях: электронный, механический

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Спектральная характеристика

Спектральная характеристика показывает изменение чувствительности в зависимости от длины волны. Типичные кривые спектральной характеристики для кремниевых и InGaAs p-i-n-диодов показаны на рис. 6.10.

Квантовая эффективность

Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.

Принцип работы фотодиода, схема и устройство фотодиода

Что такое фотодиод? Это полупроводник, создающий электрический ток, под воздействием света.

Фотодиод это: принцип работы, виды, основные характеристики, схемы Схема работы фотодиода

Чтобы понять работу фотодиода, разберемся сначала в работе диода. Диод – полупроводник, который пропускает ток в одном направлении.

Фотодиод это: принцип работы, виды, основные характеристики, схемы Диод в состоянии покоя

Слева на рисунке полупроводник р-типа, справа n-типа, иными словами слева избыток «дырок» (положительно заряженных атомов), справа избыток свободных электронов.

В результате диффузии дырки попадают в n-область, а электроны в p-область. На границе областей часть дырок и электронов рекомбинируют.

Оставшиеся проходят, создавая запирающий слой, который препятствует перемещению дырок и электронов.

Если подать напряжение: слева — плюс, справа – минус, потечет ток, так как запирающий слой будет преодолен. Если напряжение подать наоборот, то запирающий слой увеличится, ток будет равен нулю, или будет очень мал.

|Лекция — работа фотодиода|

У фотодиода светочувствительная n-область. Если он затемнен, то ведет себя, как обычный диод. Свет – электромагнитные волны – попадая в n-область фотодиода, выбивает электроны с внешних оболочек атомов. Появляется множество дырок и электронов (фотоносителей), которые диффундируют во все стороны. Р-n-переход пропускает дырки, но задерживает электроны. Возникает электрический ток.

Режимы работы фотодиодов

В результате накопления дырок и электронов соответственно в р-слое и в n-слое, образуется разность потенциалов – электродвижущая сила, которая создает обратный ток, от катода к аноду. Во внешней цепи ток будет от анода к катоду. То есть имеем солнечную электрическую батарею. В зависимости от того, как используется эффект превращения света в электрический ток, фотодиоды делятся на:

  • Фотогенераторы – всем известные солнечные панели, которые применяют для питания калькуляторов, различных приборов в космических аппаратах и многих других;
  • Фотопреобразователи – служат для управления различными устройствами. Например, фонари уличного освещения выключаются автоматически после восхода солнца. Ночью, при отсутствии света, фотодиод ведет себя, как обычный диод, пропускает ток. Днем запирает.

Pin-фотодиод

Фотодиод это: принцип работы, виды, основные характеристики, схемы Схема pin-фотодиода

В наше время широко применяются волоконно-оптические системы связи. В них для преобразования света в электрический сигнал применяются pin-фотодиоды. Р и n слои фотодиода изготавливают при помощи легирования (добавления примесей в полупроводник). Плюс говорит о том, что легирование повышенное, то есть добавок больше, чем обычно).

Средняя часть фотодиода – i часть – слаболегированный проводник n-типа. При подачи обратного напряжения, в этом слое возникает обедненная область (мало дырок и электронов). Поэтому сопротивление этой части диода велико, намного больше, чем в р+ и n+ слоях. Как следствие, электрическое поле сосредоточено в и-области. Фотон поглощенный в и-зоне рождает пару: электрон и дырка.

Сильное поле i-области мгновенно разделяет их по электродам: дырка поглощается катодом, электрон – анодом. Возникает электрический ток. Pin фотодиоды очень эффективны. Наибольшая частота, с которой они работают достигает 1010 герц. Что позволяет передавать терабайты информации за 1 секунду.

Как видим из рисунка, ширина и-слоя намного больше, чем ширина р+ и n+ слоев. Это сделано для того, чтобы фотоны поглощались бы в и-зоне, а не в соседних слоях.

Лавинный фотодиод

Фотодиод это: принцип работы, виды, основные характеристики, схемы

В волоконно-оптических системах связи помимо pin фотодиодов применяются лавинные фотодиоды (ЛФД).

ЛФД отличаются от ПИН фотодиодов наличием дополнительного р-слоя. Количество легирующих примесей подбирается так, что наибольшее сопротивление имеет р-слой. Это приводит к тому, что наибольшее падение напряжения происходит в р-слое. Фотон попадая в светочувствительный i-слой выбивает электрон, который устремляется к аноду. Соответствующая электрону дырка движется к катоду.

|Принцип работы фотодиода|

Электрон на своем пути попадает в зону высокого напряжения р-слоя. Здесь скорость электрона резко возрастает и становится достаточной для выбивания с внешней орбиты атомов р-слоя других электронов. Новые свободные электроны в свою очередь сбивают с валентных слоев дополнительные электроны. Процесс нарастает лавинообразно. Поэтому этот тип фотодиодов называется лавинным.

На рисунке показано резкое усиление электродвижущей силы в зоне р-слоя. Первичный ток, возникший в и-слое, лавинообразно усиливается в р-слое. Коэффициент умножения может достигать нескольких сотен. Слишком большое умножение приводит к большим шумам, которые увеличиваются быстрее сигнала. Оптимальный коэффициент умножения находится в пределах от30 до 100.

Основные характеристики фотодиодов

Мы рассмотрели физические аспекты работы фотодиодов. Чтобы до конца разобраться в том, что такое фотодиод необходимо ознакомиться с его математическим описанием. Главные характеристики фотодиодов: вольтамперная, световая и спектральная. Рассмотрим ВАХ:

Фотодиод это: принцип работы, виды, основные характеристики, схемы Вольтамперная характеристика фотодиода

Мы видим семейство кривых, характеризующих зависимость тока, проходящего через фотодиод от приложенного напряжения. Каждая кривая соответствует различным потокам излучения (светового или инфракрасного). Кривая Ф=0 характеризует функционирование фотодиода в темноте. Все кривые не заходят во II четверть. Рабочая область III четверть.

Очень интересный факт, заключается в том, что в III четверти сила тока почти не зависит от приложенного обратного напряжения и сопротивления нагрузки. Она зависит от величины светового потока. Чем больше поток, тем больше сила тока. Уравнение зависимости обратного напряжения от силы тока имеет вид:

  • Eобр — Iф · R = U
  • Где Еобр – разность потенциалов источника обратного напряжения;
  • U – обратное напряжение на фотодиоде;
  • Iф– фототок (ток нагрузки);
  • R – резистор нагрузки.
  • Мы видим, что фотодиод в рабочей четверти является источником тока во внешней цепи.

I четверть – нерабочая зона фотодиода. Здесь приложено к нему прямое напряжение. Диффузный ток подавляет фототок.

В IV четверти фотодиод работает, как фотогальванический элемент. Точка пересечения кривой с осью абсцисс соответствует значению ЭДС, возникающей при отсутствии тока в цепи. То есть при R= ∞. У кремниевых фотодиодов Uх при разных потоках Ф равно приблизительно 0,5в.

Точка пересечения кривых с осью ординат показывает ток короткого замыкания. То есть ток при R=0.

Заштрихованная область показывает оптимальный режим для потока Ф1.

|Как работает фотодиод|

Исчерпывающая информация о фотодиодах

Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

  • При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
  • Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
  • Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
  • Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
  • Чем выше освещенность, тем больше обратный ток
Читайте также:  Реле давления для компрессора: принципы работы, подключение, регулировка, настройка, схема, как сделать своими руками

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

Схема фотодиода

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую.

Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%.

Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

  • Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
  • Спектральная. Характеризует влияние длины световой волны на фототок
  • Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
  • Порог чувствительности – минимальный световой поток, на который реагирует диод
  • Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
  • Инерционность

Из чего состоит фотодиод?

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Разновидности фотодиодов

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов.

Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника.

По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Области применения фотодиодов

  • Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
  • Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

Другие материалы по теме

Фотодиод это: принцип работы, виды, основные характеристики, схемы

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Фотодиоды: принцип работы и характеристики

В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.

Принцип действия фотодиода

Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.

Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.

Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область.

Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока. Фотодиод это: принцип работы, виды, основные характеристики, схемы Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС.  Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.

Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.

В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.

Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами.

Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов.

Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.

Характеристики фотодиодов

Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.

Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.

Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость.

Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением.

Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.

Схема блока питания компьютера

Читайте также:  Датчик дроссельной заслонки Ланос: как устроен, неполадки, замена

Фотодиоды. Виды и устройство. Работа и характеристики

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

1 – полупроводниковый переход. 2 – положительный полюс. 3 – светочувствительный слой. 4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области.

Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду.

При этом его величина зависит от величины освещенности.

Режимы работы

Фотодиоды способны функционировать в следующих режимах:

  • Режим фотогенератора. Без подключения источника электричества.
  • Режим фотопреобразователя. С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами.

Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт/м2.

При функционировании фотодиода в качестве фотопреобразователя, источник напряжения подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

pin фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 1010 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.

 

Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда.

Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки.

Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

I — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность

Факторы, влияющие на эту характеристику:

  • Время диффузии неравновесных носителей заряда.
  • Время прохождения по р-n переходу.
  • Период перезарядки емкости барьера р-n перехода.

Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Наиболее влияющими оказались такие факторы:

  • Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
  • Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.

Похожие темы:

Оставьте комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *